lunes, 4 de noviembre de 2019


SUMAS Y RESTAS
SUMA
La adición es una operación básica de la aritmética de los números naturales, enteros, racionales, reales y complejos; por su naturalidad, que se representa con el signo "+", el cual se combina con facilidad matemática de composición en la que consiste en combinar o añadir dos números o más para obtener una cantidad final o total. La adición también ilustra el proceso de juntar dos colecciones de objetos con el fin de obtener una sola colección. Por otro lado, la acción repetitiva de sumar uno es la forma más básica de contar.
En términos más formales, la suma es una operación aritmética definida sobre conjuntos de números (naturales, enteros, racionales, reales y complejos), y también sobre estructuras asociadas a ellos, como espacios vectoriales con vectores cuyas componentes sean estos números o funciones que tengan su imagen en ellos. También se suman matrices.
En el álgebra moderna se utiliza el nombre suma y su símbolo "+" para representar la operación formal de un anillo que dota al anillo de estructura de grupo abeliano, o la operación de un módulo que dota al módulo deestructura de grupo abeliano. También se utiliza a veces en teoría de grupos para representar la operación que dota a un conjunto de estructura de grupo. En estos casos se trata de una denominación puramente simbólica, sin que necesariamente coincida esta operación con la suma habitual en números, funciones, vectores, etc.
RESTA
La resta o la sustracción es una operación de aritmética que se representa con el signo (–), representa la operación de eliminación de objetos de una colección. Por ejemplo, en la imagen de la derecha, hay 5-2 manzanas—significando 5 manzanas con 2 quitadas, con lo cual hay un total de 3 manzanas. Por lo tanto, 5 – 2 = 3. Además de contar frutas, la sustracción también puede representar combinación otras magnitudes físicas y abstractas usando diferentes tipos de objetos: números negativos, fracciones, números irracionales, vectores, decimales, funciones, matrices y más.
La sustracción sigue varios patrones importantes. Es anticonmutativa, lo que significa que el cambio de la orden cambia el signo de la respuesta. No es asociativa, lo que significa que cuando se restan más de dos números, importa del orden en el que se realiza la resta. Restar 0 no cambia un número. La sustracción también obedece a reglas predecibles relativas a las operaciones relacionadas, tales como la adición y la multiplicación. Todas estas reglas pueden probarse, a partir de la sustracción de números enteros y generalizarlas mediante los números reales y más allá. Las operaciones binarias generales que siguen estos patrones se estudian en el álgebra abstracta.
Realizar sustracciones es una de las tareas numéricas más simples. La sustracción de números muy pequeños es accesible para los niños pequeños. En la educación primaria, los estudiantes se les enseña a restar números en el sistema decimal, comenzando con un solo dígito y progresivamente abordando problemas más difíciles. Las ayudas mecánicas van desde el antiguo ábaco a la computadora moderna.










sábado, 2 de noviembre de 2019

que son los números naturales
Resultado de imagen para Qué son los números naturales
En matemáticas, un número natural es cualquiera de los números que se usan para contar los elementos de ciertos conjuntos,​ como también en operaciones elementales de cálculo. Son aquellos números naturales los que sirven para contar elementos por lo que son enteros por ejemplo: 1,2,3,4,5,6,7,8,9… Por definición convencional se dirá que cualquier elemento del siguiente conjunto, ℕ = {1, 2, 3, 4, …}, es un número natural.​ De dos números vecinos cualesquiera, el que se encuentra a la derecha se llama siguiente o sucesivo,​ por lo que el conjunto de los números naturales es ordenado e infinito.
El conjunto de todos los números naturales iguales o menores que cierto número natural , es decir, el conjunto , se llama segmento de una sucesión natural y se denota  o bien .

HISTORIA
Antes de que surgieran los números naturales para la representación de cantidades, las personas usaban otros métodos para contar, utilizando para ello objetos como piedras, palitos de madera, nudos de cuerdas, o simplemente los dedos (ver sistema de numeración unario). Más adelante comenzaron a aparecer los símbolos gráficos como señales para contar, por ejemplo marcas en una vara o simplemente trazos específicos sobre la arena (véase hueso de Ishango). Pero fue en Mesopotamia alrededor del año 400 a. C. donde aparecen los primeros vestigios de los números que consistieron en grabados de señales en forma de cuñas sobre pequeños tableros de arcilla empleando para ello un palito aguzado. De aquí el nombre de escritura cuneiforme. Este sistema de numeración fue adoptado más tarde, aunque con símbolos gráficos diferentes, en la Grecia Antigua y en la Antigua Roma. En la Grecia antigua se empleaban simplemente las letras de su alfabeto, mientras que en la antigua Roma, además de las letras, se utilizaron algunos símbolos.
Quien colocó al conjunto de los números naturales sobre lo que comenzaba a ser una base sólida, fue Richard Dedekind en el siglo XIX. Este los derivó de una serie de postulados (lo que implicaba que la existencia del conjunto de números naturales se daba por cierta), que después precisó Peano dentro de una lógica de segundo orden, resultando así los famosos cinco postulados que llevan su nombre.